
JSD: Parallel Job Accounting on the IBM SP2

William Saphir 1, James Patton Jones I

NAS Technical Report NAS-95-xxx May 95

NAS Scientific Computing Branch

NASA Ames Research Center

Mail Stop 258-6
Moffett Field, CA 94035-1000

Abstract

The IBM SP2 is one of the most promising parallel computers for scientific super-

computing -- it is fast and usually reliable. One of its biggest problems is a lack of

robust and comprehensive system software. Among other things, this software

allows a collection of Unix processes to be treated as a single parallel application.

It does not, however, provide accounting for parallel jobs other than what is pro-

vided by AIX for the individual process components. Without parallel job account-

ing, it is not possible to monitor system use, measure the effectiveness of system

administration strategies, or identify system bottlenecks. To address this problem,

we have written jsd, a daemon that collects accounting data for parallel jobs. jsd

records information in a format that is easily machine- and human-readable, allow-

ing us to extract the most important accounting information with very little effort.

jsd also notifies system administrators in certain cases of system failure.

1.0 Introduction

In July, 1994, a 160-node IBM SP2 was placed at the Numerical Aerodynamic

Simulation (NAS) facility at NASA Ames Research Center. One of the research

goals of the NAS SP2 testbed is to learn how to create a "production" parallel

environment of the type provided on NAS' parallel vector Cray C90 supercomput-

ers.

1. Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000



The SP2 is essentially a collection of RS6000/590 workstations connected by a

fast switch (which is not required, but which is part of the NAS system). IBM's

Parallel Operating Environment (POE) software provides the "glue" to hold

these workstations together. One of the key challenges for this software (and for

any other software that creates a parallel computer from a network of single-pro-

cessor nodes) is to recognize parallel applications as distinct entities, rather than

as collections of individual Unix processes. Parallel applications should be

started, scheduled, and terminated as a whole. Parallel operating system software

that recognizes parallel applications in this way we term "parallel aware."

POE is moderately parallel aware. It allows parallel jobs to be started and killed

as a unit and provides other facilities which we won't discuss here. All parallel

jobs are registered with a Job Manager, which allocates collections of nodes for

use by parallel applications. At NAS, POE is configured so that the job manager

allocates a given node to only one parallel job, enforcing space-sharing and pro-

hibiting time-sharing. There are many reasons for this policy. For instance, many

parallel jobs run extremely inefficiently when timeshared due to load balancing

and synchronization effects. Furthermore, only one process per node may access

the switch in "user space" mode, which provides low latency and high band-

width communication. Generally speaking, only embarrassingly parallel,

dynamically load-balanced applications can perform efficiently when timeshared

against each other. Of course individual processes in a parallel application are

timeshared with Unix system processes on each node, but the impact of system

processes is usually small.

Surprisingly, POE does not collect accounting data for parallel jobs. It is possible

to collect standard Unix accounting information about individual processes, but

this is not adequate for several reasons. First, Unix accounting generally mea-

sures CPU time, not wall clock time. For a parallel application on dedicated

nodes, CPU time is meaningless. A process consumes resources (the SP2 node)

whether or not it uses CPU time. The most inefficient parallel applications

(which spend much of their time blocking for communication) use the least

amount of CPU time. Second, Unix process accounting provides no direct pic-

ture of the parallel nature of an application. To understand system usage and ade-

quately schedule resources, we need to know how many processes comprise a

parallel application and what type of application it is (POE or PVMe, for exam-

pie). There is no direct way to tell, for example, whether 16 Unix processes com-

prise a single parallel application or 2 applications of 8 processes each.

The simplest and most direct approach to collecting accounting information

would be to have the Job Manager keep a log of all jobs. We hope that IBM will

eventually do this. Another approach would be to use accounting information

provided by our batch scheduling system, PBS. While we will eventually use

this information, PBS currently schedules only a portion of SP2 jobs and there-

fore doesn't provide a complete picture. Instead, we have written a simple moni-

toring daemon, jsd, which keeps a record of all parallel jobs run on the SP2.



2.0 JSD

jsd is a daemon that runs continuously and collects information about parallel

jobs running on the SP2. It records information about individual jobs (owner,

number of nodes, start and stop time, etc.) and "snapshot" information about the

current system state. It also notifies system administrators when the Job Monitor

fails to respond.

There is nothing fancy about the basic operation of jsd. It examines the state of

the system at fixed time intervals (currently every 30 seconds), and updates its

internal picture of what jobs are running, jsd notices when new jobs appear and

when old ones disappear. Clearly jsd may not notice jobs lasting fewer than 30

seconds, and may overestimate the length of jobs by as much as 30 seconds. It

will not underestimate because it uses a start time reported by the job manager.

jsd queries the Job Manager for its information, using an interface documented

in /usr/include/jm_client .h and also used by the jm_status com-

mand. The routines in the jm_client interface allow a process to establish a con-

nection to the Job Manager and to query the Job Manager. After some

experimentation, we determined that the Job Manager forks a new server process

to handle each connection. To avoid incurring this overhead for each request

(every 30 seconds) jsd opens one connection and repeatedly queries the same

connection. (Originally when opening a separate connection for each request, we

exposed a bug in the jm_client software that caused connections to the SDR

(System Data Repository) daemon to remain open and eventually crash the sys-
tem).

jsd creates three logs -- a snapshot log, a job log, and an error log.

2.1 Snapshot Log

The snapshot log contains "snapshots" of system activity. A typical entry looks
like this:

E 799444425 8 104 Tue May 2

J 80102 userl 1 3749

J 58760 user2 4 8815

J 14041 user3 8 "7922

J 19171 user4 4 2556

J 89546 user5 18 1689

J 17710 user6 32 i[401

J 67061 user7 5 984

J 119664 user8 32 674

12:53:45 1995

The format of the entry is designed for easy parsing by both humans and com-

puters. The "E" in the first line denotes a new Entry in the log file. This line also

records the number of jobs running and the total number of nodes in use. The

3



date is recordedin standardUnix time (secondssince 12 A.M. Jan 1, 1970,
GMT) andalsoin human-readableformat. The Job Manager provides informa-

tion that allows jsd to determine whether the job was started by poe, PVMe, or

loadleveler. More specifically, it gives the name of the application that reserved

the nodes through the Job Manager. Subsequent lines, starting with "J" denote

job entries. Each line shows the process id of the controlling process, job owner,

number of nodes, length of time (in seconds) job has been running.

2.2 Job Log

The job log contains a record of each job run on the system. A typical set of
entries looks like this:

J userl 16 799442310 ilii poe Tue May 2 12:18:30 1995

J user2 1 799442448 1064 poe Tue May 2 12:20:48 1995

J user3 1 799443488 86 poe Tue May 2 12:38:08 1995

J user2 31 799437126 6509 poe Tue May 2 10:52:06 1995

J user2 16 799443535 161 poe Tue May 2 12:38:55 1995

Each line corresponds to a single job, and records the job owner, number of

nodes, start time, total time (in seconds), and type of job.

The snapshot log and job log contain equivalent data, and one could generate one

from the other. Why have both? The job log contains the essential accounting

data, in a form that facilitates generation of reports based on user, number of

nodes, or length of job. The snapshot log provides the same data in a way that

facilitates generation of reports showing usage as a function of time, such as

average number of nodes in use during each hour of the day. Furthermore, the

snapshot log is updated continuously, so little important data is lost in the event

of system crash, when a long-running job would not appear in the job log.

2.3 Job Manager failure detection

jsd notifies system administrators when its connection to the Job Manager is lost.

Usually this is due to a Job Manager crash. It attempts to open a new connection

every 30 seconds and notifies system administrators if it is successful, jsd often

gives us our first indication of system failure.

At NAS, jsd utilizes the NAS Centralized Test Management System (CTMS) to

report critical errors. CTMS is a tool that receives status and error messages from

various systems and forwards all messages to a central point of access, which is

monitored 24 hours a day. jsd can also notify system administrators through
electronic mail.

4



3.0 Report Generation

Both the job and snapshot logs are designed to be easily readable by both

humans and computers. Our report generation utilities are short and straightfor-

ward shell scripts and C programs. The data generated by jsd has been extremely

helpful in assessing system performance.

Figure 1 shows the utilization of the NAS SP2 over a three month period at the

beginning of 1995. The utilization is expressed as a percentage of total node-

hours available in a week. The total hours include system maintenance periods

and unscheduled downtime, so that the utilization figures are conservative. The

most interesting feature of Figure 1 is that it shows a large increase in utilization

after the introduction of the PBS job scheduler.

Figure 2 shows hourly utilization over a one-week period. The significant drop-

off in utilization around 5 A.M. was the result of a scheduling algorithm which

tried to keep nodes "highly available" during prime time, which started at 6 A.M.

PST. The schedule has since been modified to increase utilization in the early

morning hours.

Figure 3 shows the node hours used by the top 50 users in March, 1995. The dis-

tribution is much more uniform than we had expected, and shows that many

users are getting significant system usage.

Figure 4 gives the distribution of jobs by number of nodes over a 1 month period

in 1995, showing nfillions of node-seconds used by jobs of different sizes. Note

that large jobs use proportionately more node-seconds per unit of wall clock

time. Figure 4 shows an expected peak at 32 nodes and smaller peaks at other

powers of two, but also shows very large peaks at 18, 20, 39, 100 and 144 nodes.

Each of these peaks can be attributed to a particular application.
Weakly Utilization on NAS SP-2

=

/

80

70

60

5O

4O

3O

20

10

0 _

941205

! .
i,

,." \\ ,

/ \ i PBS instaJled

¢

\

gSO'l 95o' 0, g,o' o,
Week Beginning...

950403

FIGURE 1.

5



z

140

120

100

80

60

4o !,!!

iii.

l!i:

Mon

SP-2 Nodes in Use for Week Beginning March 6
!

!i ._I

:_i !ii

1

V

ls

i

Tues

k

ii i _

:it
i,

5i

I. i

/

Wed Thur

Day ot Week and Hour of Day

!

r 1

i 'i

i : \?!1i i

f

!

I

i
f

1
i

gri

FIGURE 2.

7000

6000 HI

5000

4000

o 3000

2000

1000

0
0 5

Top 50 Users 3/g5
! i ! ! ! i

10 15 20 25 30 35 40 45 50
User

FIGURE 3.

6



6O
Node hours by job size

5O

_ 4o

t_

$

_= 30
"5

o

20

10

0 20 40 60 80 1O0 120 140
Number of nodes

FIGURE 4.

4.0 Installation and Maintenance

jsd is simple to set up and run. Most sites will probably want to configure the fol-

lowing in the Makefile:

• Define CFMS_FLAG=-DCTMS if C'IMS is being useA

• Specify location of CTMS libraries if used (ignored if CTMS is not set)

• Define POC, a list of addresses of system administrators to whom to
send mail

• Edit the locations of the log files. By default log files are written in

/usr/adm/SPlogs (the names are set in the C source, not the Makefile)

By default, jsd is installed in /usr/local/etc. To have it automatically run

at boot time and automatically restart on error, add the following line to/etc/init-
tab:

jsd:2:respawn:/usr/local/etc/jsd > /dev/console 2>&l

There is currently no protection against multiple jsd processes starting up at

once. Multiple jsd processes will write to the same log files, with unpredictable
results.

jsd should run on the control workstation or another front-end workstation to the

SP2. It should write to a local filesystem, not one that is NFS-mounted.

7




